Abstract

Significant enhancement of photoluminescence (PL) was attained for Er ions and Si nanocrystallites (nc-Si) in SiO2 films by two kinds of hydrogenation, using H2 molecules or H atoms. Er-doped SiO2 films containing Er impurities and a high density of nc-Si were fabricated by laser ablation of Er films deposited on Si substrate in an O2 gas atmosphere, followed by annealing at high temperatures in flowing Ar gas. Hydrogenation at 300–500 °C was found to effectively increase the PL intensity of Er ions as well as that of nc-Si. In particular, the hydrogen atom treatment dramatically shortens the hydrogenation time for the enhancement of Er PL compared to the hydrogen molecule treatment. Spectra of electron spin resonance showed a decrease in residual defects, namely, Pb-type defects located at the interfaces between nc-Si and SiO2 by hydrogenation. These results clearly show the effectiveness of hydrogen passivation for Si nanostructures; i.e., the increase in the Er PL and nc-Si PL due to hydrogen passivation of the nonradiative recombination centers located at the interfaces between nc-Si and SiO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call