Abstract
Hydrogenation and degradation properties of Mg–10 wt% Ni hydrogen storage alloys were investigated by cyclic hydriding–dehydriding tests. Mg–10 wt% Ni alloy was synthesized by rotation-cylinder method (RCM) under 0.3% HFC-134a/air atmosphere and their hydrogenation and degradation properties were evaluated by pressure-composition-isotherm (PCI) measurement. Hydrogen storage capacities gradually increased following 160 hydriding–dehydriding cycles and thereafter started to decrease. Measured maximum hydrogen capacity of Mg–10 wt% Ni alloy is 6.97 wt% at 623 K. Hydriding and dehydriding plateau pressure were kept constant for whole cycles. Reversible hydrogen capacity started to descend after 280 hydriding–dehydriding cycles. The lamellar eutectic structure of Mg–Ni alloy consists of Mg-rich α -phase and β - Mg 2 Ni . It is assumed that the lamellar eutectic structure enhances hydrogenation properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.