Abstract

The need to find sustainable alternatives to fossil fuels in aviation without requiring drastic structural changes in turbines and tanks has prompted a search for new components to blend with the standard Jet A1. Turpentine obtained by vacuum distillation of resin extracted from the common pine Pinus pinaster or as a byproduct of the paper industry is compared with hydrogenated turpentine at different levels of conversion as a component of jet blends. Properties such as density, kinematic viscosity, heating values, lubricity, flash point, pour point, crystallization onset temperature, and smoke point are reported. Turpentine shows high soot formation tendency. Hydrogenation was carried out as a method to saturate the double bonds of pinenes and to overcome this problem. The performance of four hydrogenated turpentines at different levels of turpentine–hydroturpentine conversion proves improvements in some key properties and especially reductions in the sooting tendency, concluding that partially hydrogenated turpentine can be blended up to 50% v/v with Jet A1, fulfilling the limit required by the standard specification for aviation turbine fuels containing synthesized hydrocarbons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.