Abstract

BackgroundAlthough lipids transfer through placenta is very limited, modification in dietary fatty acids can lead to implications in fetal and postnatal development. Trans fatty acid (TFA) intake during gestation and lactation have been reported to promote dyslipidemia and increase in pro- inflammatory adipokines in offspring. The aim of this study was to evaluate whether the alterations on pro-inflammatory cytokines and dyslipidemia observed previously in 21-d-old offspring of rats fed a diet containing hydrogenated vegetable fat during gestation and lactation were related to alterations in TLR-4, TRAF-6 and adipo-R1 receptor in white adipose tissue and muscle. On the first day of gestation, rats were randomly divided into two groups: (C) received a control diet, and (T) received a diet enriched with hydrogenated vegetable fat, rich in trans fatty acids. The diets were maintained throughout gestation and lactation. Each mother was given eight male pups. On the 21st day of life the offspring were killed. Blood, soleus and extensor digital longus (EDL) muscles, and retroperitoneal (RET) white adipose tissue were collected.Results21-d-old of T rats had higher serum triacylglycerols, cholesterol, and insulin. The Adipo R1 protein expression was lower in RET and higher in EDL of T group than C. TLR-4 protein content in all studied tissues were similar between groups, the same was verified in TRAF-6 protein expression in soleus and EDL. However, TRAF-6 protein expression in RET was higher in T than C.ConclusionThese results demonstrated that maternal ingestion of hydrogenated vegetable fat rich in TFAs during gestation and lactation decrease in Adipo R1 protein expression and increase in TRAF-6 protein expression in retroperitoneal adipose tissue, but not in skeletal muscle, which could contributed for hyperinsulinemia and dyslipidemia observed in their 21-d-old offspring.

Highlights

  • Inadequate maternal nutrition during gestation and/or lactation can alter aspects of morphological and physiological development of pups, increasing the predisposition on the adult life to metabolic diseases, like diabetes mellitus and cardiovascular disease [1,2,3]

  • The nitrocellulose membranes were incubated overnight at 4°C with antibodies against TLR4, TRAF6, AdipoR1 and a-Tubulin obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA), diluted in blocking buffer combined with 1% bovine serum albumin (BSA) and washed for 30 min in blocking buffer without BSA

  • In this study, maternal ingestion of hydrogenated vegetable fat rich in Trans fatty acid (TFA) during gestation and lactation altered the blood lipid profiles, increased insulin serum levels accompanied by a decrease in Adipo R1 protein expression and increase in TRAF-6 protein expression in retroperitoneal adipose tissue, which could contributed for insulin resistance and the dyslipidemia observed in their 21-d-old offspring

Read more

Summary

Introduction

Inadequate maternal nutrition during gestation and/or lactation can alter aspects of morphological and physiological development of pups, increasing the predisposition on the adult life to metabolic diseases, like diabetes mellitus and cardiovascular disease [1,2,3]. Lipids transfer through placenta is very limited, changes in dietary fatty acids can lead to implications in fetal and postnatal development [7]. Lipids transfer through placenta is very limited, modification in dietary fatty acids can lead to implications in fetal and postnatal development. Trans fatty acid (TFA) intake during gestation and lactation have been reported to promote dyslipidemia and increase in pro- inflammatory adipokines in offspring. The aim of this study was to evaluate whether the alterations on pro-inflammatory cytokines and dyslipidemia observed previously in 21-d-old offspring of rats fed a diet containing hydrogenated vegetable fat during gestation and lactation were related to alterations in TLR-4, TRAF-6 and adipo-R1 receptor in white adipose tissue and muscle. Soleus and extensor digital longus (EDL) muscles, and retroperitoneal (RET) white adipose tissue were collected

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.