Abstract

Hydrogenated amorphous silicon (a-Si:H) has been developed as an important materials in thin film-based photovoltaic technologies because of considerable cost reduction as a result of low material consumption and low-temperature process. Among the materials used for thin film solar cells, amorphous silicon is the most important material in the commercial production. Despite of these benefits, the efficiency limit for a single band gap thin film based solar cell predicted by Shockley and Queisser (i.e. ~31%) has become a matter of challenge for current research community. Considering the thermodynamic behavior of a single threshold absorber in generating electricity from solar irradiance, this limit seems inevitable, and thus a tremendous investigation is now being carried out in different dimensions such as hot carrier generation, rainbow solar cell, multiple exciton generation, multiband absorber etc. Nonetheless, so far reported efficiency (ηlab~12%) provide enough room to improve and take challenge to reach to the highest value for a-Si:H based solar cell design. Further to improve architectural design as well as engineer the materials, it is indispensable to understand the optical, electrical and structural properties of aSi:H as an active layer. Here in this article, an attempt was taken into account to focus on such characteristics that affect the overall cell efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.