Abstract

AbstractThin film hydrogenated amorphous silicon (a-Si:H) is widely used in photovoltaics. In order to get the best possible performance of the a-Si:H solar cells it is important to optimize the amorphous film and solar cells in terms their parameters such as mobility gap, p-, i- and n-layer doping levels, electron and hole lifetime and their mobilities, resistance of p-, i- and n-layers, contact grid geometry and parameters of the transparent conducting and antireflecting layers, and others. To maximize thin a-Si:H film based solar cell performance we have developed a general numerical formalism of photoconversion, which takes into account all the above parameters for the optimization. Application of the formalism is demonstrated for typical a-Si:H based solar cells before Staebler-Wronski (SW) light soaking effect. This general formalism is not limited to a-Si:H based systems only, and it can be applied to other types of solar cells as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.