Abstract

This review surveys recent work done in the laboratory of the author and related laboratories on the properties and possible practical applications of hydrogenases of phototrophic microorganisms. Homogeneous hydrogenase preparations were obtained from purple non-sulfur (Rhodospirillum rubrum S1, Rhodobacter capsulatus B10) and purple sulfur (Chromatium vinosum D, Thiocapsa roseopersicina BBS) bacteria, and from the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum L; highly purified hydrogenase samples were prepared from the cyanobacterium Anabaena cylindrica and from the green alga Chlamydomonas reinhardii. It was shown that hydrogenases of R. capsulatus and T. roseopersicina contain Ni and Fe-S cluster. The cytochromes of the c or b type serve as native electron acceptors for the hydrogenases of the purple bacteria and cyanobacteria; rubredoxin or cytochrome c for the hydrogenase of the green sulfur bacterium; and ferredoxin for Ch. reinhardii hydrogenase. The hydrogenase of T. roseopersicina BBS reversibly activates H2 at Eh less than -290 mV (pH 7), whereas those from R. capsulatus and from C. limicola f. thiosulfatophilum exhibit their maximum activity at Eh greater than -300 mV and are thus favourable only for the H2 uptake. Hydrogenase synthesis in different phototrophs depends on pO2, H2 concentrations and organic substrates. Organic compounds, which serve as electron donors and carbon sources, repress hydrogenase synthesis in R. rubrum, R. capsulatus and in Ectothiorhodospira shaposhnikovii when present at high concentrations. The synthesis of T. roseopersicina hydrogenase is constitutive. H2 notably stimulates hydrogenase activity in R. capsulatus. The synthesis of hydrogenase in R. sphaeroides 2R occurs only in the presence of H2 and does not depend on the presence of organic compounds in the medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.