Abstract
Abstract Hydrogen uptake of pristine multi-walled carbon nanotubes is increased more than three-fold at 298 K and hydrogen pressure of 4.0 MPa, upon addition of hydrogen spillover catalyst manganese oxide, from 0.26 to 0.94 wt%. Simple and convenient in situ reduction method is used to prepare Mn-oxide/MWCNTs composite. XRD, FESEM, and TEM demonstrates nanostructural characterization of pristine MWCNTs and composite. TGA analysis of Mn-oxide/MWCNTs composites showed a single monotonous fall related to MWCNTs gasification. Enhancement of hydrogen storage capacity of composite is attributed to spillover mechanism owing to decoration of Mn-oxide nanoparticles on outer surface of MWCNTs. Hydrogen uptake follows monotonous dependence on hydrogen pressure. Oxide-MWCNTs composite not only shows high hydrogen storage capacity as compared to pristine, but also exhibit significant cyclic stability upon successive adsorption–desorption cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.