Abstract

Hydrogen atom transfer reactions between the substrate and coenzyme are key mechanistic features of all adenosylcobalamin-dependent enzymes. For one of these enzymes, glutamate mutase, we have investigated whether hydrogen tunneling makes a significant contribution to the mechanism by examining the temperature dependence of the deuterium kinetic isotope effect associated with the transfer of a hydrogen atom from methylaspartate to the coenzyme. To do this, we designed a novel intramolecular competition experiment that allowed us to measure the intrinsic kinetic isotope effect, even though hydrogen transfer may not be rate-determining. From the Arrhenius plot of the kinetic isotope effect, the ratio of the pre-exponential factors (A(H)/A(D)) was 0.17 +/- 0.04 and the isotope effect on the activation energy [DeltaE(a(D-H))] was 1.94 +/- 0.13 kcal/mol. The results imply that a significant degree of hydrogen tunneling occurs in glutamate mutase, even though the intrinsic kinetic isotope effects are well within the semiclassical limit and are much smaller than those measured for other AdoCbl enzymes and model reactions for which hydrogen tunneling has been implicated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.