Abstract

Hydrogen treatment is a facile and efficient approach for the enhancement in the functioning of TiO2 nanoparticles for dye-sensitized solar cells (DSSC). In this work, TiO2 nanoparticles have been synthesized in the hydrogen environment followed by the deposition onto FTO glass substrates with various film thickness as photoanodes for DSSC. The synthesized hydrogen treated TiO2 nanoparticles based photoanodes have showed significantly improved photocurrent in the resulting fabricated devices. SEM and TEM analyses have confirmed the particle size and morphology of TiO2 nanoparticles at various magnifications. The crystalline structure and phase identification were studied by XRD analysis and Raman spectroscopic measurements. The UV–Vis spectroscopy analysis was carried out to find the response of samples for ultraviolet and visible light. The current-voltage measurements have confirmed the improvement of photocurrent that is principally due to improved photo-activity of hydrogen treated TiO2 nanoparticles. Moreover, hydrogen treated TiO2 nanoparticles-based photoanode with the film thickness of 11.65 μm has remarkably enhanced power conversion efficiency of 6.05% in DSSCs. The ability of highly photoactive hydrogen treated TiO2 nanoparticles will provide the new openings in different fields that include photo-electrochemical water splitting and in many other applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.