Abstract

Hierarchical titanium oxide nanostructures were synthesized by Pulsed Laser Deposition (PLD) and investigated as photoanodes for photoelectrochemical water splitting. An explorative combined approach to enhance TiO2 performance was based, on the one hand, on the employment of hydrogenation treatments with the aim of improving quantum efficiency and extending light absorption to the visible range; on the other hand, on the optimization of morphology and structure, to increase light harvesting and charge separation/transport. This approach was pursued by depositing at a fixed background pressure with variable oxygen content (to control the growth morphology and structure) and by annealing in a Ar/H2 mixture (in substitution of or in combination with air annealing), in order to induce crystallization to the anatase structure and reduction/hydrogenation of the material. Morphology, structure and optical properties were investigated by SEM, Raman spectroscopy, X-ray diffraction and UV–visible-IR spectroscopy. An optical absorption tail towards the visible range appeared after Ar/H2 annealing, without any significant modification of the nanoscale structure after the different thermal treatments. Photocurrent measurements under solar simulator illumination showed a noteworthy increase of photoresponse for Ar/O2-deposited samples with air annealing followed by Ar/H2 annealing. These findings can be ascribed to the combination between an improved charge transport of TiO2 deposited in low-O2 atmosphere and a hydrogenation effect on the nanostructures surface layers, leading to improved quantum efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.