Abstract

Infrared photodissociation of weakly bound "mass tags" is widely used to determine the structures of ions by analyzing their vibrational spectra. Molecular hydrogen is a common choice for tagging in cryogenic radio-frequency ion traps. Although the H2 molecules can introduce distortions in the target species, we demonstrate an advantage of H2 tagging in the analysis of positional isomers adopted by the molecular anions derived from decarboxylation of formylbenzoates. Attachment of H2 to the carbanion centers of three such isomers yields distinct shifts in the H2 stretch, which can be used to determine the distribution of isomers in an unknown sample. Electronic structure calculations indicate that the position-dependent shifts are due to different reactivities of the carbanion sites with respect to an intracluster proton-transfer reaction with the H2 molecule. We exploit this spectroscopic method to quantify the surprisingly facile migrations of the anionic center that have been previously reported for phenide rearrangements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.