Abstract

Hypertension is a major risk factor for intimal hyperplasia (IH) and re-stenosis following vascular and endovascular interventions. Preclinical studies suggest that hydrogen sulphide (H2S), an endogenous gasotransmitter, limits re-stenosis. While there is no clinically available pure H2S releasing compound, the sulfhydryl containing angiotensin converting enzyme inhibitor zofenopril is a source of H2S. Here, it was hypothesised that zofenopril, due to H2S release, would be superior to other non-sulfhydryl containing angiotensin converting enzyme inhibitors (ACEi) in reducing intimal hyperplasia. Spontaneously hypertensive male Cx40 deleted mice (Cx40-/-) or wild type (WT) littermates were randomly treated with enalapril 20 mg or zofenopril 30 mg. Discarded human vein segments and primary human smooth muscle cells (SMCs) were treated with the active compound enalaprilat or zofenoprilat. IH was evaluated in mice 28 days after focal carotid artery stenosis surgery and in human vein segments cultured for seven days exvivo. Human primary smooth muscle cell (SMC) proliferation and migration were studied invitro. Compared with control animals (intima/media thickness 2.3 ± 0.33 μm), enalapril reduced IH in Cx40-/- hypertensive mice by 30% (1.7 ± 0.35 μm; p= .037), while zofenopril abrogated IH (0.4 ± 0.16 μm; p < .002 vs. control and p > .99 vs. sham operated Cx40-/- mice). In WT normotensive mice, enalapril had no effect (0.9665 ± 0.2 μm in control vs. 1.140 ± 0.27 μm; p > .99), while zofenopril also abrogated IH (0.1623 ± 0.07 μm; p < .008 vs. control and p > .99 vs. sham operated WT mice). Zofenoprilat, but not enalaprilat, also prevented IH in human vein segments exvivo. The effect of zofenopril on carotid and SMCs correlated with reduced SMC proliferation and migration. Zofenoprilat inhibited the mitogen activated protein kinase and mammalian target of rapamycin pathways in SMCs and human vein segments. Zofenopril provides extra beneficial effects compared with non-sulfhydryl ACEi in reducing SMC proliferation and re-stenosis, even in normotensive animals. These findings may hold broad clinical implications for patients suffering from vascular occlusive diseases and hypertension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call