Abstract
Apart from nitric oxide (NO) and carbon monoxide (CO), hydrogen sulphide (H2 S) has emerged as a potential gasotransmitter that has regulatory roles in root differentiation, proliferation and stress signalling. H2 S metabolism in plants exhibits spatio-temporal differences that are intimately associated with sulphide signalling in the cytosol and other subcellular components, e.g. chloroplast and mitochondria. H2 S biosynthesis in plant organs uses both enzymatic and non-enzymatic pathways. H2 S generation in roots and aerial organs is modulated by developmental phase and changes in environmental stimuli. H2 S has an influential role in root development and in the nodulation process. Studies have revealed that H2 S is a part of the auxin and NO signalling pathways in roots, which induce lateral root formation. At the molecular level, exogenous application of H2 S regulates expression of several transcription factors, viz. LBD (Lateral organ Boundaries Domain), MYB (myeloblastosis) and AP2/ERF (Apetala 2/ Ethylene Response Factor), which stimulate upregulation of PpLBD16 (Lateral organ boundaries domain 16), thereby significantly increasing the number of lateral roots. Concomitantly, H2 S acts as a crucial signalling molecule in roots during various abiotic stresses, e.g. drought, salinity heavy metals (HMs), etc., and augments stress tolerance in plants. Interestingly, extensive crosstalk exists between H2 S, NO, ABA, calcium and ethylene during stress, which escalate plant defence and regulate plant growth and productivity. Hence, the present review will elaborate the role of H2 S in root development, stress alleviation, legume-Rhizobium symbiosis and rhizosphere signalling. The review also examines the mechanism of H2 S-mediated abiotic stress mitigation and cross-talk with other signaling molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.