Abstract

Background and objectiveIncreasing studies suggest that miRNAs are served as responders and regulators for pathological change in human. miR-485-5p is such a miRNA that has been proved to be affected by spinal cord I/R injury. This study was to investigate the functional involvement and mechanism of miR-485-5p in sulfuretted hydrogen (H2S) protecting neural cell from injury. MethodsIn this study, serum tumor necrosis factor (TNF-α) and miR-485-5p were detected in 20 patients with spinal cord ischemia/reperfusion (I/R) injury and in 20 healthy control. H2S was administered by GYY4137 treatment. Two TNF-α-stimulated neural human cell lines, AGE1.HN and SY-SH-5Y, were used for in vitro I/R experiments. Quantitative RT-PCR was performed to determine miR-485-5p expression. QRT-PCR and western blot were respectively performed to evaluate expression of tumor necrosis factor receptor type 1-associated DEATH domain protein (TRADD). ResultsThe result showed that serum TNF-α was significantly reduced in patients compared with healthy control. In vitro TNF-α treatment dose dependently caused GE1.HN and SY-SH-5Y apoptosis, whereas this promotion action was reversed by CYY4137. Moreover, we found that H2S protected neuronal cell against apoptosis via TRADD dependent. By luciferase reporting gene assay, western blot and qRT-PCR, we confirmed that TRADD expression was regulated by miR-485-5p. Such miR-485-5p/TRADD axis was proved to be involved in GE1.HN and SY-SH-5Y neural cell-protective process of H2S. ConclusionIn summary, our data for the first time identifies miR-485-5p/TRADD axis in hydrogen sulfide protecting against TNF-α-induced neuronal cell apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call