Abstract
Hydrogen sulfide (H2S) has been shown to protect against oxidative stress injury and inflammation in various hypoxia-induced insult models. However, it remains unknown whether H2S protects human skin keratinocytes (HaCaT cells) against chemical hypoxia-induced damage. In the current study, HaCaT cells were treated with cobalt chloride (CoCl2), a well known hypoxia mimetic agent, to establish a chemical hypoxia-induced cell injury model. Our findings showed that pretreatment of HaCaT cells with NaHS (a donor of H2S) for 30 min before exposure to CoCl2 for 24 h significantly attenuated CoCl2-induced injuries and inflammatory responses, evidenced by increases in cell viability and GSH level and decreases in ROS generation and secretions of IL-1β, IL-6 and IL-8. In addition, pretreatment with NaHS markedly reduced CoCl2-induced COX-2 overexpression and PGE2 secretion as well as intranuclear NF-κB p65 subunit accumulation (the central step of NF-κB activation). Similar to the protective effect of H2S, both NS-398 (a selective COX-2 inhibitor) and PDTC (a selective NF-κB inhibitor) depressed not only CoCl2-induced cytotoxicity, but also the secretions of IL-1β, IL-6 and IL-8. Importantly, PDTC obviously attenuated overexpression of COX-2 induced by CoCl2. Notably, NAC, a ROS scavenger, conferred a similar protective effect of H2S against CoCl2-induced insults and inflammatory responses. Taken together, the findings of the present study have demonstrated for the first time that H2S protects HaCaT cells against CoCl2-induced injuries and inflammatory responses through inhibition of ROS-activated NF-κB/COX-2 pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: PLoS ONE
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.