Abstract

The purpose of the present study is to investigate the role of hydrogen sulfide (H2S), in improving resistance to common bean salt stress. Method shows that common bean seeds were soaked in water and in two concentrations of sodium hydrosulfide (50 and 100 µM) for 8 h. After 25 days from sowing, the pots were irrigated with water and with two concentrations of NaCl (75 and 150 mM) until the end of the experiment. Results revealed that H2S relieved salt stress by decreasing growth inhibition and photosynthetic characteristics, and increasing osmolyte contents (proline and glycine betaine). Furthermore, H2S reduced oxidative damage by lowering lipid peroxidation, electrolyte leakage, and reactive oxygen species production such as hydrogen peroxide, hydroxyl radicals, and superoxide anion by increasing non-enzymatic antioxidants such as ascorbic acid and glutathione, as well as enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX), glutathione reductase (GR), and nitrate reductase (NR). Meanwhile, salt stress and H2S application increased the endogenous level of H2S, which was accompanied by an increase in nitric oxide concentration. H2S, in particular, maintained sodium (Na+) and potassium (K+) homeostasis in the presence of excess NaCl. In general, H2S effectively reduced oxidative stress in common bean plants by increasing relative expression levels of copper-zinc superoxide dismutase (Cu-ZnSOD), CAT, and glutathione S-transferase (GST). Applying H2S to common bean plants could protect them from salinity stress by maintaining the Na+/K+ balance, boosting endogenous H2S and nitric oxide levels, and preventing oxidative damage by increasing antioxidant activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call