Abstract

Recent studies show that endogenous hydrogen sulfide (H2S) plays an anti-inflammatory role in the pathogenesis of airway inflammation. This study investigated whether exogenous H2S may counteract oxidative stress-mediated lung damage in allergic mice. Female BALB/c mice previously sensitized with ovalbumin (OVA) were treated with sodium hydrosulfide (NaHS) 30min before OVA challenge. Forty eight hours after antigen-challenge, the mice were killed and leukocyte counting as well as nitrite plus nitrate concentrations were determined in the bronchoalveolar lavage fluid, and lung tissue was analysed for nitric oxide synthase (NOS) activity, iNOS expression, superoxide dismutase (SOD), catalase, glutathione reductase (GR) and glutathione peroxidase (GPx) activities, thiobarbituric acid reactive species and 3-nitrotyrosine containing proteins (3-NT). Pre-treatment of OVA-sensitized mice with NaHS resulted in significant reduction of both eosinophil and neutrophil migration to the lungs, and prevented the elevation of iNOS expression and activity observed in the lungs from the untreated allergic mice, although it did not affect 3-NT. NaHS treatment also abolished the increased lipid peroxidation present in the allergic mouse lungs and increased SOD, GPx and GR enzyme activities. These results show, for the first time, that the beneficial in vivo effects of the H2S-donor NaHS on allergic airway inflammation involve its inhibitory action on leukocyte recruitment and the prevention of lung damage by increasing endogenous antioxidant defenses. Thus, exogenous administration of H2S donors may be beneficial in reducing the deleterius impact of allergic pulmonary disease, and might represent an additional class of pharmacological agents for treatment of chronic pulmonary diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.