Abstract

Hypertension is an important determinant of cardiovascular disease, and strict blood pressure regulation is beneficially associated with the risk for cardiovascular events or all-cause mortality. However, intensive antihypertensive treatment is not always sufficient to reach normotension. Hydrogen sulfide (H2S) is a gaseous signalling molecule with antihypertensive properties. It is endogenously produced, but can also be exogenously administrated. The current review provides an overview on H2S research performed in the context of hypertension and cardiovascular disease. H2S has been increasingly found to contribute to different (patho-)physiological processes such as blood pressure regulation and scavenging of reactive oxygen species. A deficiency of H2S-producing enzymes results in hypertension, and administration of H2S donors lowers blood pressure and protects against organ damage in the experimental setting. Thiosulfate, a H2S metabolite, can act as a H2S donor, and is already clinically used for the treatment of calciphylaxis in patients with end-stage renal disease. Treatment of hypertensive rats with thiosulfate results in lower blood pressure and reduces organ damage. Although human data on H2S and hypertension are scarce, experimental data indicate that elevation of H2S levels using dietary sulfate or exogenous H2S (donors) could be a promising therapeutic strategy in the setting of hypertension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.