Abstract

The metal-organic framework (MOF)-derived alpha-iron oxide hollow nanosphere/molybdenum diselenide nanoflower (α-Fe2O3/MoSe2) composite is fabricated via simple hydrothermal route. Multiple characterization methods have proved the successful synthesis of α-Fe2O3/MoSe2 composites. The nanocomposite with a mass ratio of α-Fe2O3 and MoSe2 of 4:1 shows high response to H2S gas sensing. Moreover, the gas sensitivity test of the system shows that the α-Fe2O3/MoSe2 composite sensor exhibits a faster response/recovery rate, outstanding repeatability and anti-humidity interference toward H2S sensing at room temperature, which also shows excellent selectivity for H2S compared to various potentially interfering gases. Further studies have shown that α-Fe2O3/MoSe2 nanocomposites have improved H2S gas sensing performance due to the increased active sites and specific surface area, and the formation of n-n heterojunctions at the interface between α-Fe2O3 hollow nanospheres and MoSe2 nanoflowers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.