Abstract
Chemodynamic immunotherapy that utilizes catalysts to produce reactive oxygen species (ROS) for killing tumor cells and arousing antitumor immunity, has received considerable attention. However, it is still restricted by low ROS production efficiency and insufficient immune activation, due to intricate redox homeostasis in tumor microenvironment (TME). Herein, a metalloprotein-like hybrid nanozyme (FeS@GOx) is designed by in situ growth of nanozyme (ferrous sulfide, FeS) in natural enzyme (glucose oxidase, GOx) to amplify ROS cascade for boosting chemodynamic immunotherapy. In FeS@GOx, GOx allows the conversion of endogenous glucose to gluconic acid and hydrogen peroxide, which provides favorable increasing hydrogen peroxide for subsequent Fenton reaction of FeS nanozymes, thus reinforcing the ROS production. Notably, H2 S release is activated by the gluconic acid generation-related pH decrease, which can suppress the activity of endogenous thioredoxin reductase and catalase to further inhibit the ROS elimination. Thus, FeS@GOx can sustainably amplify ROS accumulation and perturb intracellular redox homeostasis to improve chemodynamic therapy and trigger robust immunogenic cell death for effective immunotherapy combined with immune checkpoint blockade. This work proposes a feasible H2 S amplified ROS cascade strategy employing a bioinspired hybrid nanozyme, providing a novel pathway to multi-enzyme-mediated TME modulation for precise and efficient chemodynamic immunotherapy. This article is protected by copyright. All rights reserved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.