Abstract

Fetal alcohol spectrum disorder (FASD), which is caused by prenatal alcohol exposure, can result in cell death in specific brain regions. Alcohol-induced neurocognitive defects offspring's are included with activation of oxidative-inflammatory cascade followed with wide apoptotic neurodegeneration in many brain's regions such as hippocampus. According to the latest studies, H2S (hydrogen sulfide) can protect neuronal cells via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms in different animal models. Therefore, we aimed to evaluate the protective effects of H2S on ethanol-induced neuroinflammation and neuronal apoptosis in pup hippocampus with postnatal alcohol exposure. Administration of ethanol (5.27g/kg) in milk solution (27.8mL/kg) for each rat pups was performed through intragastric intubation on 2 to 10 postnatal days and NaHS as H2S donor (1mg/kg) was injected on similar time, subcutaneously. For examining the antioxidant and anti-inflammatory effects, ELISA assay was performed to determine the levels of TNF-α, IL1β, and antioxidant enzymes. Immunohistochemical staining was performed to evaluate the expression levels of GFAP and caspase-3 also Nissl staining was done for necrotic cell death evaluation. H2S treatment could significantly increase the activity of total superoxide dismutase, catalase, and glutathione (P < 0.05). It also decreased the levels of TNF-α, IL1β, and malondialdehyde, compared with the ethanol group (P < 0.05). Moreover, the number of hippocampal caspase-3, GFAP-positive cells, and necrotic cells death reduced in the H2S group (P< 0.01). Based on the findings, H2S can inhibit apoptotic signaling that is mediated by the oxidative-inflammatory cascade following ethanol exposure of rat pups on postnatal period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call