Abstract

Recently, the gastrointestinal microbiome, and its metabolites, has emerged as a potential regulator of host metabolism. However, to date little is known on the precise mechanisms of how this regulation occurs. Hydrogen sulfide (H2S) is abundantly produced in the colon by sulfate-reducing bacteria (SRB). H2S is a bioactive gas that plays regulatory roles in many systems, including metabolic hormone regulation. This gas metabolite is produced in close proximity to the glucagonlike peptide-1 (GLP-1)-secreting cells in the gut epithelium. GLP-1 is a peptide hormone that plays pivotal roles in both glucose homeostasis and appetite regulation. We hypothesized that H2S can directly regulate GLP-1 secretion. We demonstrated that H2S donors (NaHS and GYY4137) directly stimulate GLP-1 secretion in murine L-cells (GLUTag) and that this occurs through p38 mitogen-activated protein kinase without affecting cell viability. We then increased SRB in mice by supplementing the diet with a prebiotic chondroitin sulfate for 4 weeks. Mice treated with chondroitin sulfate had elevated Desulfovibrio piger levels in the feces and increased colonic and fecal H2S concentration. These animals also had enhanced GLP-1 and insulin secretion, improved oral glucose tolerance, and reduced food consumption. These results indicate that H2S plays a stimulatory role in GLP-1 secretion and that sulfate prebiotics can enhance GLP-1 release and its downstream metabolic actions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.