Abstract
The present investigation attempts to provide mechanisms for the influence of metal catalysts on carbon supports in odorous gas removal. For this purpose, an activated carbon fiber cloth (ACFC) was subjected to successive metal impregnation to modify its surface properties and so increase its treatment capacity. The carbon fiber cloth adsorbent was prepared by classical incipient wetness impregnation followed by calcination in order to obtain metal oxide phases. Different impregnation parameters (type of metal, level of impregnation, calcination temperature) in the removal of hydrogen sulfide and ammonia were studied. Adsorption kinetics and capacities were carried out in a batch reactor at room temperature. It was found that removal activity depended on metal loading as well as on the order of the metal addition and calcination phase. The capacity of ACFC-supported metal oxides to adsorb both pollutants showed great improvement compared to the virgin adsorbent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.