Abstract

Hydrogen sulfide (H2S) has been identified as an important gaseous signal in plants. Here, we investigated the mechanism of H2S in alleviating postharvest senescence and rotting of Kyoho grape. Exogenous application of H2S released from 1.0 mM NaHS remarkably decreased the rotting and threshing rate of grape berries. H2S application also prevented the weight loss in grape clusters and inhibited the decreases in firmness, soluble solids, and titratable acidity in grape pulp during postharvest storage. The data of chlorophyll and carotenoid content suggested the role of H2S in preventing chlorophyll breakdown and carotenoid accumulation in both grape rachis and pulp. In comparison to water control, exogenous H2S application maintained significantly higher levels of ascorbic acid and flavonoid and total phenolics and reducing sugar and soluble protein in grape pulp. Meanwhile, H2S significantly reduced the accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2 ∙−) in grape pulp. Further investigations showed that H2S enhanced the activities of antioxidant enzymes ascorbate peroxidase (APX) and catalase (CAT) and decreased those of lipoxygenase (LOX) in both grape peels and pulp. In all, we provided strong evidence that H2S effectively alleviated postharvest senescence and rotting of Kyoho grape by modulating antioxidant enzymes and attenuating lipid peroxidation.

Highlights

  • Grapes are subject to postharvest senescence during storage, in the syndromes of serious water loss, berry softening, offflavour occurrence, and decay caused mainly by Botrytis cinerea, which reduces the commodity and consumption of grapes [1]

  • Grape clusters were fumigated with H2S released from aqueous solutions of NaHS ranging from 0.2 mM to 2.2 mM with water treatment as controls

  • We demonstrated that exogenous application of H2S effectively alleviated postharvest senescence of grapes by preventing rachis browning and berry rotting and maintaining grape firmness, soluble solids, titratable acidity, and natural antioxidants during postharvest storage

Read more

Summary

Introduction

Grapes are subject to postharvest senescence during storage, in the syndromes of serious water loss, berry softening, offflavour occurrence, and decay caused mainly by Botrytis cinerea, which reduces the commodity and consumption of grapes [1]. Despite the obvious effect of SO2 in controlling fungal spreading and postharvest rotting, SO2 treatment causes tissue damage to grape berry such as cracks and bleaching and leads to excessive sulfite residue which may induce allergenic effects [3, 4]. Accumulating evidence indicates that H2S functions in various processes in plants, including seed germination, root organogenesis, abiotic stress tolerance, photosynthesis, guard cell movement, and postharvest senescence, suggesting that H2S acts as an important signaling molecule in plants, as do NO and CO [11,12,13,14,15,16,17]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call