Abstract

The need for the enhancement of alternative energy sources is increasingly recognised and, in this perspective, the achievement of hydrogen economy seems to be fundamental. In this regard, fuel cells represent an interesting option for small and medium scale distributed renewable generation; however, these systems are inextricably linked with the concept of hydrogen storage. Research on metal hydrides revealed the opportunity to use these materials as basic elements in hydrogen storage devices, called MH systems. This means that interest exists in investigating the behaviour of metal hydrides: in fact, MH system operation is based on the hydriding/dehydriding reactions hydrides undergo, and, with the aim of evaluating the performance of such devices, these processes must be discussed and modelled.In the light of this, a simple numerical model to study hydride-based storage systems and their integration with fuel cells was developed: two low-temperature hydrides (LaNi5, LaNi4·8Al0.2) and two high-temperature hydrides (Mg, Mg2Ni) were selected and their behaviours in a MH system were simulated and compared with the help of such a model. This is an essential step in identifying the hydrides more suited to the application in question. Results showed that the choice is the trade off between encumbrance and reaction times; this implies that low-temperature hydrides are preferable because their encumbrance is limited and their reaction temperature range grants a greater versatility in small scale generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call