Abstract

The present review revisits representative studies addressing the development of efficient Pd-based carbon-supported heterogeneous catalysts for two important reactions, namely, the production of hydrogen from formic acid and the hydrogenation of carbon dioxide into formic acid. The HCOOH-CO2 system is considered a promising couple for a hydrogen storage system involving an ideal carbon-neutral cycle. Significant advancements have been achieved in the catalysts designed to catalyze the dehydrogenation of formic acid under mild reaction conditions, while much effort is still needed to catalyze the challenging CO2 hydrogenation reaction. The design of Pd-based carbon-supported heterogeneous catalysts for these reactions encompasses both the modulation of the properties of the active phase (particle size, composition, and electronic properties) and the modification of the supports by means of the incorporation of nitrogen functional groups. These approaches are herein summarized to provide a compilation of the strategies followed in recent studies and to set the basis for a hydrogen storage system attained using the HCOOH-CO2 couple.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.