Abstract
Mg–15 wt%Ni–5 wt%Fe 2O 3 (Mg155) was prepared by reactive mechanical grinding (RMG). Mg155 exhibited high hydriding and dehydriding rates even at the first cycle, and its activation was completed after only two hydriding–dehydriding cycles. The activated Mg155 absorbed 5.06 and 5.38 wt% of hydrogen, respectively, for 5 and 60 min at 573 K under 12 bar H 2. It desorbed 1.50 and 5.28 wt% of hydrogen, respectively, for 5 and 60 min at 573 K under 1.0 bar H 2. The initial hydrogen absorption rate decreased, but the hydrogen desorption rate increased rapidly with an increase in temperature from 563 K to 603 K. The rate-controlling step for the dehydriding reaction in a range from F ≃ 0.20 to F ≃ 0.75 is considered to be the chemical reaction at the Mg hydride/α-solid solution interface. The absorption and desorption PCT curves exhibited two plateaus at 573 K. The hydrogen-storage capacity of the activated Mg155 was about 6.43 wt% at 573 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.