Abstract

To investigate the effects of specific porous microstructure of diatomite on the hydrogen storage properties of MgH(2), a two-step preparation was carried out. The first step was decrepitation of MgH(2) particle size during 10 h of milling. The second step was additional 1 h of milling with diatomite. The microstructure and phase composition of materials was characterized by X-ray diffraction, whereas the powder morphology and degree of additive dispersion were analyzed by scanning electron microscopy. The hydrogen desorption behaviour of nanocomposites was investigated by differential scanning calorimetry. The results show that addition of porous diatomite structure leads to decrease in desorption temperature, since there was no other effect that can have an influence on kinetics, such as formation of the metastable gamma-phase, reduction of oxides to the native metal and/or homogeneous dispersion of the catalyst. This indicates that the microstructure of added material plays the main role in the enhancement of desorption properties of composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.