Abstract
The Ni–25%X (X=Fe, Co, Cu, molar fraction) solid solutions were prepared and then doped into MgH2 through high-energy ball milling. The initial dehydrogenation temperatures of MgH2/Ni–25%X composites are all decreased by about 90 °C relative to the as-milled pristine MgH2. The Ni–25%Co solid solution exhibits the most excellent catalytic effect, and the milled MgH2/Ni–25%Co composite can release 5.19 wt.% hydrogen within 10 min at 300 °C, while the as-milled pristine MgH2 can only release 1.78 wt.% hydrogen. More importantly, the dehydrogenated MgH2/Ni–25%Co composite can absorb 5.39 wt.% hydrogen at 275 °C within 3 min. The superior hydrogen sorption kinetics of MgH2/Ni–25%Co can be ascribed to the actual catalytic effect of in-situ formed Mg2Ni(Co) compounds. First-principles calculations show that the hydrogen absorption/desorption energy barriers of Mg/MgH2 systems decrease significantly after doping with transition metal atoms, which interprets well the improved hydrogen sorption properties of MgH2 catalyzed by Ni-based solid solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of Nonferrous Metals Society of China
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.