Abstract

Hydrogen storage properties of Li functionalized B2S honeycomb monolayers are studied using density functional theory calculations. The binding of H2 molecules to the clean B2S sheet proceeds through physisorption. Dispersed Li atoms on the monolayer surface increase both the hydrogen binding energies and the hydrogen storage capacities significantly. Additionally, ab initio molecular dynamics calculations show that there is no kinetic barrier during H2 desorption from lithiated B2S. Among the studied B8S4Lix (x = 1, 2, 4, and 12) compounds, the B8S4Li4 is found to be the most promising candidate for hydrogen storage purposes; with a 9.1 wt% H2 content and 0.14 eV/H2 average hydrogen binding energy. Furthermore, a detailed analysis of the electronic properties of the B8S4Li4 compound before and after H2 molecule adsorption confirms that the interactions between Li and H2 molecules are of electrostatic nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.