Abstract

La1.8Ti0.2MgNi9–xCox (x = 0, 0.1, 0.3, 0.5) alloys were prepared by magnetic levitation melting under argon atmosphere. The effects of Co substitution on the phase structure and the hydrogen storage properties of the alloys were investigated. The results show that LaNi5 and LaMg2Ni9 phases are contained in all experimental alloys. LaNi3 phase disappears and LaNi2 phase appears as x ≥ 0.1 and x ≥ 0.3, respectively. Electrochemical performances have been improved after Co substitution for Ni, for example, the discharge capacity and the high rate dischargeability (HRD) reach the maximum at x = 0.1, and the optimum cycling stability is obtained at x = 0.5. The positive impact of Co on the hydrogen diffusion rate in bulk enhances the HRD, but to high Co content (x ≥ 0.3), the unsatisfied hydrogen desorption capability brings relative low HRD compared with the alloy electrode at x = 0.1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call