Abstract

AbstractThe development of alloys with substantial hydrogen storage capacities is a potential solution to the demand for hydrogen storage in a future hydrogen‐based energy system. The synthesis, structural‐microstructural properties, and hydrogen storage performance of a multicomponent TiZrVCrNi high‐entropy melt‐spun ribbon have been discussed in the present investigation. The x‐ray diffraction and transmission electron microscopy investigations confirm that this as‐cast and melt‐spun alloy contains only a single C14‐type hexagonal (a = b = 5.02 Å, c = 8.15 Å, α = β = 90°, γ = 120°) Laves phase. The room temperature pressure composition isotherms were studied with a pressure range of 0 to 40 atm. Continuing from our previous study in which we reported a hydrogen storage capacity of ~1.5 wt% in an as‐cast high‐entropy alloy synthesized using Arc melting, the total hydrogen storage capacity of TiZrVCrNi high‐entropy melt‐spun ribbons was found to be ~2 wt% in this work. This study makes the way forward for greater hydrogen storage in melt‐spun ribbons. The observation of only minimal losses in storage capacity, even after 10 cycles of experiments on hydrogen absorption, shows that the reversible hydrogen storage capacity has high durability. To the best of our knowledge, these demonstrations are the first to present a study on the hydrogen storage capacity (~2 wt%) of the equiatomic TiZrVCrNi melt‐spun ribbons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.