Abstract
The crystal structure, microstructure, hydrogen storage properties and thermal stability of the as-cast and annealed V35Ti20Cr45 alloys prepared by arc-melting were studied in this work. It was confirmed that the as-cast alloy is a body-centered cubic (bcc) single phase, while it consists of bcc main phase and C14-typed Laves secondary phase after annealed at 973 K for 72 h. As a result of the microstructure change, the activation performance and kinetic properties of the annealed alloy are improved greatly due to the catalysis of C14-typed Laves secondary phase in the annealed alloy. The kinetic mechanism of hydrogen absorption/desorption processes in the as-cast and annealed alloys was discussed using the Johnson-Mehl-Avrami (JMA) equation. Based on the plateau pressure data from pressure-composition-temperature (PCT) measurements with the Van't Hoff equation, the calculated formation enthalpies of the hydride formed in the as-cast and annealed alloys indicate that heat treatment results in lower thermal stability of the hydride in the as-cast alloy. Furthermore, using the Kissinger method with the peak temperatures from differential scanning calorimeter (DSC) measurements at different heating rates, the calculated activation energies of the dehydrogenation in the as-cast and annealed alloys suggest that heat treatment is very beneficial to improve hydrogen absorption/desorption capacities in the alloy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.