Abstract

The hydrogen stored in liquid organic hydrogen carriers (LOHCs) has an advantage of safe and convenient hydrogen storage system. Dibenzyltoluene (DBT), due to its low flammability, liquid nature and high hydrogen storage capacity, is an efficient LOHC system. It is imperative to indicate the optimal reaction conditions to achieve the theoretical hydrogen storage density. Hence, a Hydrogen Storage Prediction System empowered with Weighted Federated Machine Learning (HSPS-WFML) is proposed in this study. The dataset were divided into three classes, i.e., low, medium and high, and the performance of the proposed HSPS-WFML was investigated. The accuracy of the medium class is higher (99.90%) than other classes. The accuracy of the low and high class is 96.50% and 96.40%, respectively. Moreover, the overall accuracy and miss rate of the proposed HSPS-WFML are 96.40% and 3.60%, respectively. Our proposed model is compared with existing studies related to hydrogen storage prediction, and its accuracy is found in agreement with these studies. Therefore, the proposed HSPS-WFML is an efficient model for hydrogen storage prediction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call