Abstract
Based on density-functional theory, we find that B-doped graphene significantly enhances the Be adsorption energy and prevent Be atoms from clustering. The complex of Be adsorbed on B-doped graphene can serve as a high-capacity hydrogen storage medium: the hydrogen storage capacity (HSC) can reach up to 15.1 wt% with average adsorption energy −0.298 eV/H2 for double-sided adsorption. It has exceeded the target specified by US Department of Energy with HSC of 9 wt% and a binding energy of −0.2 to −0.6 eV/H2 at near-ambient conditions. By analyzing the projected electronic density of states of the adsorbed system, we show that the high HSC is due to the change of electron distribution of H2 molecules and a graphene system decorated with B and Be atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.