Abstract

Hydrogen storage in carbon nanotubes (CNTs) is investigated at ambient temperature and pressures of 0–12 MPa, using 35–85 g multi-wall carbon nanotube (MWNT) samples that were synthesized in a nano-agglomerate fluidized bed reactor. The volume of hydrogen gas released by the CNTs was measured by a volumetric flow meter. The capability of H2 storage in the CNT samples of mass of up to 85 g can be obtained with a precision of 0.01 wt. %. MWNTs with average diameters ranging from 10–30 nm and were pretreated using nitric acid or a sodium hydroxide solution wash and a high temperature treatment. The influence of the hydrogen pressure, hydrogen storage time and treatment method were studied. All data show that the amount of hydrogen released by the MWNTs at room temperature is no more than 0.30 wt. %, while hydrogen released by MWNT at 77 K can reach 2.27 wt. %.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.