Abstract

New materials capable of storing hydrogen at high gravimetric and volumetric densities are required if hydrogen is to be widely employed as a clean alternative to hydrocarbon fuels in cars and other mobile applications. With exceptionally high surface areas and chemically-tunable structures, microporous metal-organic frameworks have recently emerged as some of the most promising candidate materials. In this critical review we provide an overview of the current status of hydrogen storage within such compounds. Particular emphasis is given to the relationships between structural features and the enthalpy of hydrogen adsorption, spectroscopic methods for probing framework-H(2) interactions, and strategies for improving storage capacity (188 references).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.