Abstract

Mg and Mg-based hydrides have attracted much attention because of their high gravimetric hydrogen storage densities and favourable kinetic properties. Due to novel preparation methods and the development of suitable catalysts, hydrogen uptake and desorption is now possible within less than 2 min. However, the hydrogen reaction enthalpy of pure Mg is too high for many applications, for example, for the zero emission car. Therefore, different routes are explored to tailor the hydrogen reaction enthalpy to potential applications. This article summarizes the recent developments concerning sorption properties and thermodynamics of Mg-based hydrides for hydrogen storage applications. In particular, promising strategies to decrease the hydrogen reaction enthalpy by alloying and the use of reactive hydride composites are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.