Abstract

Hydrogen storage for mobile and stationary applications is an expanding research topic. One of the more promising storage techniques relies on the reversibility, high selectivity, and high hydrogen density of liquid organic hydrides, in particular methylcyclohexane (MCH). Catalyst evaluation for MCH dehydrogenation to toluene is based on three catalytic parameters: activity, selectivity, and stability. Current catalysts, optimized for catalytic reforming, do not meet the targeted aromatic selectivity (+99%) for MCH dehydrogenation. Therefore, a range of Pt catalysts was prepared and compared with commercially available catalysts in a fixed-bed reactor under operating conditions suitable for mobile and stationary applications. The best overall performance was realized by a particular monometallic Pt catalyst. This catalyst showed superior activity, selectivity, and stability compared with other prepared and commercial catalysts. As an effort to further enhance the aromatic selectivity, this study identified the main side-reactions associated with MCH dehydrogenation, the effect of operating parameters on by-product yields, and the effect of catalyst deactivation on long-term selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.