Abstract

Ordered mesoporous carbons (OMCs) were synthesized by using ordered mesoporous silica as a template, and chitosan as carbon precursors. A novel process of pre-impregnation is proposed to prepare cobalt-embedded OMC. This process is based on using cobalt chelated chitosan as carbon precursor. The surface functional groups and metal contents were determined by X-ray photoelectron spectroscopy. The bulk cobalt contents in the cobalt-embedded OMCs were measured by an atomic absorption spectrometer. The morphology of the OMCs was observed by small angle X-ray scattering analysis and transmission electron microscope. The OMC texture characteristics were determined by using nitrogen adsorption analysis. Hydrogen capacities of the OMCs were obtained by a volumetric method. The cobalt-embedded OMCs possess obviously higher hydrogen adsorption capacity than that of pure OMC. At 298 K and under 5.5 MPa, the hydrogen capacities of the OMC and OMC–Co-5 are 0.2 and 0.45 wt%, respectively. The H2/Co ratio of the hydrogen adsorbed on the OMC–Co-5 is 1.54 indicating a Kubas-type interaction between Co and H2. In addition, the hydrogen spillover effect might occur in parallel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.