Abstract

We investigate the hydrogen storage capacity of the light transition metal (TM)-decorated metal organic frameworks (MOFs) by performing ab initio density functional theory calculations. We find that among all the light TM elements, divalent Ti and Fe are suitable for decorating MOFs to enhance the hydrogen uptake, considering the H2 binding energy on the TM atom and the reversibly usable number of H2 molecules attached to the metal site. In general, the magnetization of metal atoms undergoes a high-spin to low-spin state transition when H2 molecules are adsorbed, which helps to stabilize the system energetically. By analyzing the projected density of states on each TM atom, it is shown that the d-level shift induced by the ligand field of the adsorbed H2 molecules contributes substantially to the H2 binding strength. We also study the stability of selected TM-decorated nanostructures against the attack of foreign molecules by examining the energetics of those contaminating molecules around the metal sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.