Abstract

Hydrogen is a promising energy resource as a substitute for fossil fuels, and metal alloy hydrides are considered to be good candidates as hydrogen storage materials. In the hydrogen storage processes, hydrogen desorption is as important as hydrogen adsorption. In order to understand the hydrogen desorption features of those clusters, here, single-Nb-atom-doped Al clusters were prepared in the gas phase and their reaction with hydrogen was investigated using thermal desorption spectrometry (TDS). On average, six to eight H atoms were adsorbed in AlnNb+ (n = 4–18) clusters, and most H atoms were released upon heating of the clusters to 800 K. Two types of desorption features of AlnNb+ clusters were found, which related to the flexibility of the clusters. This study demonstrated the potential of Nb-doped Al alloy as an efficient hydrogen storage material with high storage capacity, thermal stability at room temperature, and hydrogen desorption ability upon moderate heating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.