Abstract
Solar thermochemical hydrogen production is a promising pathway for producing sustainable fuels and chemicals. One of the main challenges in the development of these processes is their low steam conversion extent, dictated by its restrictive thermodynamics requiring extremely high temperatures over 1500°C and low oxygen partial pressure to obtain a steam conversion over 10%. While condensing the unreacted steam is technically simple, the latent heat is thus rendered useless for the process. In many cases, this lost heat can be larger than the higher heating value of the produced hydrogen. We propose a new separation method based on a mechanical vapor recompression cycle, enabling the recovery of the latent heat by compressing the steam–hydrogen mixture prior to the condensation process, thus creating a temperature difference between the hot exhaust and cold inlet streams. We show that this separation method can recover the latent heat and keep its quality in relevant operating conditions while requiring less than 14% of the recovered heat for compression work, resulting in a coefficient of performance over 7. This method increases the viability of solar thermochemical hydrogen production cycles, especially under limited steam conversion conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.