Abstract

The effects of 70-keV and 1-MeV electron irradiations on gate-controlled lateral PNP (GLPNP) transistors are evaluated with and without molecular hydrogen (H2) soaking. At a given ionization dose, 1-MeV electron irradiation causes more degradation of current gain in GLPNP transistors that have not been soaked in H2 than 70-keV electrons. This is because linear bipolar transistors are sensitive to both ionization and displacement damage effects, and because 1-MeV electrons induce significant displacement damage in Si-based bipolar junction transistors and 70-keV electrons do not. In H2-soaked transistors, the degradation is much larger than in unsoaked devices, and similar amounts of degradation are observed for 70-keV electron irradiation and 1-MeV electron irradiation. This occurs because ionization–induced release, transport, and reactions of hydrogen in the bipolar-base oxide greatly enhance interface-trap buildup and dominate device response in H2-soaked devices, and because charge yield ratios for 70-keV and 1-MeV electron irradiations differ by less than ~20%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call