Abstract

Magnesium transition-metal alloys are a novel class of light-weight hydrogen-storage materials. We have studied magnesium–scandium hydride with magic-angle-spinning 1H and 2H NMR. A new double-quantum NMR method with 45Sc recoupling reveals two types of deuterium with and without scandium neighbors. Their relative occurrence quantified with 2H–{45Sc} TRAPDOR NMR reflects a non-statistical Mg and Sc distribution over the crystal lattice. The deuteron exchange observed with two-dimensional NMR is consistent with Mg and Sc-rich sub-nanometer clusters. Deuterium motion is governed by a broad range of energy barriers without clear correlation to the underlying chemical heterogeneity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.