Abstract

Rhenium hydrido carbyne complexes Re(≡CCH═C(CMe3)C≡CR)HCl(PMe2Ph)3 (R = H, n-pentyl) undergo 1,2-hydrogen shift reactions from the metal to the carbyne carbon atom to give complexes Re(HCCHC(CMe3)CCR)HCl(PMe2Ph)3, which have two isomeric forms, namely, a metallabicyclo[3.1.0]hexatriene complex, in which the chloride is cis to the metal-bonded CH, and an alkyne–carbene complex, in which the chloride is trans to the metal-bonded CH. In contrast, a similar transformation does not occur for the analogous complex Re(≡CCH═C(CMe3)C≡CSiMe3)HCl(PMe2Ph)3, which has a SiMe3 group on the C≡C moiety. A computational study suggests that the difference in the reactivity of the hydrido carbyne complexes is related to steric effects in the corresponding hydride-shift products. Formation of Re(HCCHC(CMe3)CCSiMe3)HCl(PMe2Ph)3 is not favored, mainly due to the steric interactions of the SiMe3 group with CMe3 and one of the phosphine ligands in the resulting metallabicyclo[3.1.0]hexatriene complex, and of the SiMe3 group with...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.