Abstract

Pt/Ga 2O 3/SiC metal-reactive insulator-silicon carbide (MRISiC) devices operated as Schottky diodes were characterized for their hydrogen gas sensitivity. The sensors have been tested towards different concentrations of hydrogen gas as a function of operating temperature. This study shows advantages of this structure compared to the pure thin film (90 nm) Ga 2O 3 conductometric sensor. The Ga 2O 3 thin films were prepared by the sol–gel process and deposited onto the transducers by spin-coating. For both types of sensors, the operating temperature was controlled by a micro heater located beneath the structure. It was found that cycling the ambient from synthetic air (SA) to 1% H 2 in SA air produces repeatable changes of the forward voltage at fixed forward bias. At high temperature (above 500 °C), the response time of the sensors decreases. Furthermore, the sensor shows remarkable stability and the decrease in bias voltage subject to 1% H 2 was 210 mV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.