Abstract

This paper distinguished hydrogen roles to improve electron mobility and carrier concentration in ZnO and Al doped ZnO sputtered films. By combining experimental evidences and theoretical results, we find out that hydrogen located at oxygen vacancy sites (HO) is the main factor gives rise to increase simultaneously mobility and carrier concentration which has not been mentioned before. Introducing appropriate hydrogen content during sputtering not only results in crystalline relaxation but also supports doping Al into ZnO, increasing carrier concentration and electron mobility in the film. First principles calculations confirmed hydrogen substitutional stability for oxygen vacancy, significantly reducing electron conductivity effective mass and hence increasing electron mobility. In particular, 0.8% hydrogen partial pressure ratio achieved 61 cm2V−1s−1 maximum electron mobility, optical transmittance above 82% in visible and near-infrared regions, and 2 × 1020 cm−3 carrier concentrations for HAl co-doped ZnO film. These values approach ideal electrical and optical properties for transparent conducting oxide films. The presence of one maximum electron mobility was attributed to competition between increasing mobility due to restoring effective electron mass and hydrogen passivation of native defects, and decreased electron mobility due to electron-phonon scattering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.