Abstract

Background Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an important treatment option for various hematopoietic diseases and certain hereditary diseases. Chronic graft-versus-host disease (cGVHD) has become the main life-threatening complication and cause of death in later stage postallo-HSCT. Current treatment options for cGVHD are limited. Hydrogen gas (H2) has been demonstrated that has antioxidative, anti-inflammatory, and antifibrosis effects. The aim of this study was to confirm whether oral administration hydrogen-rich water exerted therapeutic effects on a scleroderma cGVHD mouse model and tried to explain the mechanism underly it. Methods A mouse cGVHD model was established by haploidentical bone marrow transplantation. To evaluate therapeutic effects of H2 on cGVHD, survival rate, changes in clinical scores, and skin pathologic characteristics of cGVHD mice were observed. To evaluate its therapeutic mechanism, we detected the expression levels of antioxidative enzymes heme oxygenase-1(HO-1) and NAD (P)H: quinone acceptor oxidoreductase 1(NQO1) in skin homogenates. We also detected the expression level of the apoptotic protein caspase-3 in skin homogenates. Results 1-month survival rate of cGVHD mice in the hydrogen group reached 93.3%, significantly higher than 66.7% in the nonhydrogen group (p < 0.05). Clinical score of cGVHD mice was improved by hydrogen-rich water at 96 days posttransplantation (2.2 versus 4.5, p < 0.05). The skin pathological condition of cGVHD mice was significantly improved by hydrogen-rich water. At 96 days posttransplantation, average skin pathological hematoxylin and eosin (HE) staining score in the hydrogen group was 1.05, which was significantly lower than 3.2 in the nonhydrogen group (p < 0.01). Average Masson staining score was 0.6 point in the hydrogen group, lower than 0.9 point in the nonhydrogen group (p < 0.05). Both the relative expression levels of HO-1 and NQO1 proteins in skin specimens of cGVHD mice in the hydrogen group were lower than that in the nonhydrogen group (2.47 versus 6.21 and 1.83 versus 3.59, p < 0.05). The relative expression level of caspase-3 protein in skin specimens of cGVHD mice increased to 7.17 on the 96th day after transplantation, significantly higher than 4.36 in the hydrogen group. Conclusion In this study, we found that oral hydrogen-rich water improved the survival rate and clinical symptoms of cGVHD mice by antioxidant and antiapoptosis. This study would pave the way for further clinical study, which may provide a new treatment option for cGVHD.

Highlights

  • Allogeneic hematopoietic stem cell transplantation is an important treatment option for various hematopoietic diseases and certain hereditary diseases

  • Oral giving more than 2 weeks of hydrogen-rich water improved the survival rate of Chronic graft-versus-host disease (cGVHD) mice (Figure 1)

  • We demonstrated that hydrogen reduced the expression levels of HO-1 and NQO1 proteins in the cGVHD mice

Read more

Summary

Introduction

Allogeneic hematopoietic stem cell transplantation (alloHSCT) is an important treatment option for various hematopoietic diseases and certain hereditary diseases. Clinical score of cGVHD mice was improved by hydrogen-rich water at 96 days posttransplantation (2.2 versus 4.5, p < 0:05). Average Masson staining score was 0.6 point in the hydrogen group, lower than 0.9 point in the nonhydrogen group (p < 0:05) Both the relative expression levels of HO-1 and NQO1 proteins in skin specimens of cGVHD mice in the hydrogen group were lower than that in the nonhydrogen group (2.47 versus 6.21 and 1.83 versus 3.59, p < 0:05). The relative expression level of caspase-3 protein in skin specimens of cGVHD mice increased to 7.17 on the 96th day after transplantation, significantly higher than 4.36 in the hydrogen group. We found that oral hydrogen-rich water improved the survival rate and clinical symptoms of cGVHD mice by antioxidant and antiapoptosis. This study would pave the way for further clinical study, which may provide a new treatment option for cGVHD

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call